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Abstract 

This paper demonstrates a mechanism whereby 
rules can be extracted from a feedforward neural 
network trained to characterize the money
price relationship, defined as the relationship 
between the rate of growth of the money supply 
and inflation. Monthly Divisia component 
data is encoded and used to train a group of 
candidate connectionist architectures. One 
candidate is selected for rule extraction, using 
a custom decompositional extraction algorithm 
that generates rules in human-readable and 
machine-executable form. Rule and network 
accuracy are compared, and comments are made 
on the relationships expressed within the discov
ered rules. The types of discovered relationships 
could be used to guide monetary policy decisions. 

Keywords: Divisia, Inflation, Neural Net
work, Data Mining, Rule Generation 

Introduction 

In recent years the relationship between "money" 
and the macroeconomy has assumed prominence 
in academic literature and in Central Banks' 
circles. Although some Central Bankers have 
stated they have formally abandoned the notion 
of using monetary aggregates as indicators of the 
impact of their policies on the economy, research 
into the link between some kind of monetary 
aggregate and the price level is still prevalent. 
Attention is increasingly turning to the method 
of aggregation employed in the construction of 
monetary indices. The most sophisticated index 
number used thus far relies upon the formulation 
devised by Divisia [1], with roots firmly based in 

micro economic aggregation theory and statisti
cal index number theory. 

Our hypothesis is that measures of money 
constructed using the Divisia index number for
mulation are superior indicators of monetary 
conditions when compared to their simple sum 
counterparts. Our hypothesis is reinforced by a 
growing body of evidence from empirical stud
ies around the world which demonstrate that 
weighted index number measures may be able to 
overcome the drawbacks of the simple sum, pro
vided the underlying economic weak separability 
and linear homogeneity assumptions are satis
fied. Ultimately, such evidence could reinstate 
monetary targeting as an acceptable method of 
macroeconomic control, including price regula
tion. 

The theoretical case for weighted monetary 
aggregates never has been challenged seriously. 
Their potential for use in practice, however, has 
been questioned on three fronts. First, criti
cisms about the choice of a benchmark rate of 
return and the treatment of risk when measuring 
monetary user costs (both of which affect index 
weights) suggest that such an index is subject to 
unknown, and presumably large, measurement 
error. Second, if the money stock were mea
sured as the sum of its components, with each 
weighted by its share of total expenditures on 
monetary services, it has been alleged (without 
evidence) that central banks would be unable to 
influence the behaviour of such an index in the 
pursuit of a monetary policy objective. Most 
commonly, however, the case against the con
struction, publication, and use of any superla
tive index of money has been grounded in empir
ical evidence showing that an official simple sum 
measure, in the context of a particular model, 
time period, or set of tests, performs as well as 
or better than a weighted index of the same asset 
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collection. In sum, these perceived shortcomings 
have led most monetary economists and policy
makers to conclude that the practical difficul
ties associated with finding empirical proxies for 
a weighted index's theoretical components and 
explaining the behaviour of such an index to au
thorities who monitor central bank actions more 
than offset the small marginal gains (if any) from 
use of the index itself. 

This paper addresses the problem of how best 
to construct monetary aggregates, given the ex
traordinary debate on this topic in the macroe
conomics literature. A useful summary for 11 
countries is provided in Belongia and Binner [2]. 
Even the superlative Divisia monetary aggre
gates have been found to be perform less than 
optimally in the recent past using monthly US 
data over the period 1960-2004 (see [3]), there
fore guidance on improved construction of the 
monetary aggregates is a vital area for further 
research. Our policy goal in this paper is infla
tion, the current focus of monetary policy tar
gets in the UK and most major macroeconomies 
in the world today. 

We have jointly examined various aspects of 
finding relationships in quarterly UK Divisia 
data for several years (see [4] for the most recent 
UK Divisia report), and recently applied the 
same models (using an identical cOnstruction 
approach) successfully to the US's MSI data [5]. 
Our work together began in 2002 with the use 
of a specialized feedforward neural model tightly 
coupled with a custom decompositional rule ex
traction algorithm. These initial efforts yielded 
exciting results as a proof of concept, but the 
rules were both numerous and complex. As 
our research continued, we were able to demon
strate the discovery of interesting relationships 
using simpler and more standard feedforward 
connectionist models, and using a newly decou
pling and revised rule extraction algorithm fur
ther simplified and reduced the number of rules. 
(These rules are still automatically produced as 
a collection of MATLAB-based human-readable 
and machine-executable if-then rules, express
ing the discovered relationships in terms of the 
original data.) 

This year we are able to use monthly (vs. 
quarterly) Divisia data due to its availability, 
and the complexity and quantity of the gener
ated rules is reduced even further. This paper 
describes our experimentation with the latest set 
of monthly UK Divisia data, and compares these 

models and results briefly with those of the quar
terly Divisia work and our recent departure into 
the US MSI. 

2 Dataset Preparation 

Historical UK Divisia M4 and corresponding in
flation data was obtainedl in order to investi
gate the relationship between money supply and 
inflation. The training data used for connec
tionist model selection included monthly season
ally adjusted values from January 1988 through 
September 2007, a total of 117 exemplars. In
flation was constructed for each month as year
on-year growth rates of prices. Our preferred 
price series, the Consumer Price Index (CPI), 
was obtained from DataStream. The CPI data 
originated from the Office for National Statistics 
(ONS) and all data was seasonally adjusted. 

The data was prepared by calculating the per
centage of increase in value for corresponding 
months in consecutive years. This reduced the 
dataset to 105 exemplars. The automated clus
tering algorithm we've used in previous studies 
(to examine quarterly Divisia data) was used 
again this time to discretize the monthly com
ponent data. Components were represented us
ing thermometer encoding. After inspection, in
flation was manually discretized into 3 distinct 
ranges: 

• inflation % changed < 0.010 

• inflation % changed 0.010 - 0.020 

• inflation % changed> 0.020 

Inflation was encoded using mutex (l-of-N) en
coding. These two encoding schemes were se
lected based on the successful training of quar
terly Divisia data in our past work. (Mutex and 
thermometer encoding schemes are commonly 
used to prepare discretized data for neural net
work consumption.) 

Table 1 summarizes the components and en
coding levels generated for each component, as 
well as for inflation. The table identifies the type 
of asset (component name), the component ID 
# and symbol used to represent the component 
for this study, the type of encoding used, and 
the number of levels of the discretized component. 

lComponent data is available on the Internet at 
http://www.bankofengland.co.uk/sta.tistics/index.htm 
(Bank of England Statistical Interactive Database). 
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Table 1: Divisia M4 E."4~ _ncodm-

Component (Attribute) 

Notes and Coins 

Non-Interest Bearing Bank Deposits 

Interest Bearing Bank Sight Deposits 

Interest Bearing Bank Time Deposits 

Building Society Deposits 

ISA and TESSA (tax-free savings) 

ID# 

1 

2 

3 

4 

5 

6 

Symbol 

NC 

NIBD 

IBSD 

IBTD 

BSD 

ISA 

InflatlOn I N/i. [!NFL 

Encoding 

Thermometer 

Thermometer 

Thermometer 

Thermometer 

Thermometer 

Thermometer 


Mutex 


Levels 

2 

5 

14 

9 

2 

6 

3 

When all components are used as inputs to the 
neural network, there are 38 binary-valued in
puts to the network, and 3 binary-valued out
puts (representing inflation). 

Neural Network Selection 

A series of carefully controlled tests were per
formed to determine the best type of simple 
feedforward connectionist models to use for rule 
generation. The 105 data cases were divided at 
random into a training set (80%, 84 cases) and 
a validation set (20%, 21 cases). The break
out was examined to ensure that the compo
nents and outputs were reasonably represented 
in both the training and validation data. This 
same randomly generated selection was used for 
each test. 

The results of these tests are summarized in 
the following tables. The tables include columns 
for training and validation "success" expressed as 
a number and percentage of correct outputs. All 
network architectures were trained to find the 
INFL target, a set of 3 mutex-encoded binary 
values corresponding to each data case. Train
ing (and validation) success was measured by 
determining the number of total binary matches 
for all training (and validation) cases: 

• Training: (84 cases)x(3 outputs) = 252 

• Validation: (21 cases)x(3 outputs) = 63 

For each candidate model architecture (table 
row), 500 models with randomly generated ini
tial conditions were trained for 2500 epochs 
each, with the "best" model instance selected to 
represent the specified model architecture. It is 
important to note that "best" is a somewhat ar
bitrary term due to the way the "best" network is 
selected in our study. When numerous networks 
with discrete outputs are trained, they tend to 
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fall into classes, where multiple networks yield
ing identical results all belong to the same class. 
We simply choose a network from the class of 
all networks yielding the most accurate training 
and validation results. For comparison, the ta
bles below indicate how many clusters the 500 
trained networks fall into for each architecture 
("Net Clusters"), and how many of these 500 are 
members of the "class of best networks" from 
which our selection is made ("Qty"). This data 
is intended to ease the minds of those concerned 
with our selection of the "best network" for each 
architecture as we proceed with our analysis. 

No instance of any network trained for longer 
than 6 seconds on the experimental machine, a 
Slackware 10.1 Linux-based (custom SMP 2.6.13 
kernel) dual AMD Opteron 244 system with 2Gb 
RAM running MATLAB 5.3 (Rll). The neural 
models executed in this study contained (except 
where indicated otherwise) a single hidden layer 
using MATLAB'S logs7.g function, a traditional 
sigmoid activation function. The nodes in the 
output layer use the unconstrained linear func
tion (MATLAB'S purelin). 

Table 2 is for models where only a single com
ponent is used as an input to a network model 
with 5 nodes in the hidden layer. Components 4 
(IBTD) and 6 (ISA) seem to be the most reliable 
individual indicators of inflation, based on their 
training accuracy of over 82%, but neither com
ponent has an overwhelmingly good validation 
accuracy (77-80%). 

We also trained a series of models where the 
inputs lead directly to the outputs (no hidden 
layer). Surprisingly, these training and valida
tion results (not shown here) were almost iden
tical to the models trained with a single hidden 
layer of 5 nodes as shown in Table 2. 

As a quick test of sensitivity analysis, we also 
trained a series of models where all components 
except for one specific component were included 



Table 2: Sine:le C . . 
ID Inputs Train (of 252) Valid. (of 63) Net Clusters Qty in Best Cluster (of 500) 

1 2 198/78.57 % 45/71.43 % 1 500 

2 5 196/77.78 % 45/71.43 % 4 317 (148, 34)* 

3 14 203/80.56 % 49/77.78 % 5 1 (276, 183)* 

4 9 216/85.71 % 51 /80.95 % 2 277 (223)* 

5 2 196/ 77.78 % 45/71.43 % 1 500 

6 6 208/82.54 % - 49/77.78 % 1 500 
~ " .. 

(s) snown in p theses for reference 

as inputs. The rows of Table 3 identify the com
ponent not included as inputs to the network. 
All network models have 5 nodes in their hidden 
layer for this series of tests. 

A more traditional approach was also taken; 
a collection of models was trained with various 
numbers of nodes in the hidden layer. Table 4 
reflects the results of these tests, all of which 
use all 6 components as inputs to the network 
(38 encoded values in each input vector). 

The goal of training various architectures is 
to find an appropriate model from which a col
lection of human-readable rules can be gener
ated to accurately describe the dataset. Exper
imental models using only a single component 
as input, either with or without a hidden layer, 
was not convincingly accurate enough to justify 
continuing with these simpler models. Using all 
but one component showed promise, but didn't 
really suggest any specific component could be 
easily eliminated. 

The use of all components as inputs in the 
model consistently yielded the best results. 
Note, however, the excellent results the neural 
model containing no elements in the hidden layer 
(the row with H as "0" in the H column of Ta
ble 4), hence no hidden layer. These results are 
nearly as good as models containing 10 nodes in 
the hidden layer! 

Rule Generation 

Since most of the models in Table 4 had a high 
degree of accuracy in training and validation, 
we chose to do rule extraction on the simplest 
model, the network containing a hidden layer 
with the fewest (non-zero) number of nodes: the 
38-2-3 model (2 nodes in the hidden layer). This 
network is depicted in Figure L 

Metrics were collected during rule extraction 
in order to verify the rules would be a faithful 
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Figure 1: Architecture Selection: 38-2-3 

reproduction of the relationships learned by the 
network. One intermediate test ran an exhaus
tive combination of all possible discrete inputs 
through the neural network, examining the dif
ferences in output produced by the network and 
the rule generation process. Table 1 indicates 
the number of discrete bins for each input. The 
total number of all combinations of possible in
puts is a simple product of these values: 2 * 5 
* 14 * 9 * 2 * 6 = 15120. Looking at each of 
the three output nodes individually, the accu
racy (compared to providing the same inputs to 
the neural network) of the intermediate rule ex
traction is (in number of mismatches per 15120): 

• Node 1: 6 mismatches, 99.96% match 

• Node 2: 21 mismatches 99.86% match 

• Node 3: 5 mismatches, 99.97% match 

Although this check is merely a quick test taken 
during the extraction exercise, it is encouraging 
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bl Sin9:le C Excluded as I ts t 5-3 FF Networks-. • 
ID Inputs Train (of 252) Valid. (of 63) Net Clusters Qty in Best Cluster (of 500) I 

1 36 244/96.83 % 61/96.83 % 16 1 (4, 15)* 

2 33 244/96.83 % 62/98.41 % 16 2 (7, 12)* 

3 24 234/92.86 % 61/96.83 % 8 8 (110, 117)* 

4 29 228/90.48 % 63/100.0 % 15 1 (2, 6)* 

5 36 244/96.83 % 61 /96.83 % 16 2 (5, 25)* 

6 32 236/93.65 % 58/92.06 % 17 2 (3, 6)* 
* Quantity in next best clusters shown in parentheses for reference 

96.83 % 62 / 98.41 % 16 2 (4, 7)* 

5 I 244/96.83 % 62/98.41 % 17 1 (3,9)* 

6 I 244 / 96.83 % I 63 / 100.0 % I 18 1 (2, 6)* 

7 I 244 / 96.83 % I 62 / 98.41 % I 16 1 (5, 10)* 

8 I 244 / 96.83 % I 63 / 100.0 % I 16 1 (1, 8)* 

9 I 244/96.83 % I 62/ 98.41 % I 17 1 (4, 10)* 

10 I 244 / 96.83 % r 61 / 96.83 % I 14 3 (11, 29)* 
* Quantity in next best clusters shown in parentheses for reference 

to see the high correlation between the trained 
network and the "intermediate" extracted rules. 

The rule extraction technique applied for this 
research is a traditional decompositional ap
proach, peering back through the trained net
work with an emphasis on the values dynami
cally generated by the hidden nodes. For each 
hidden node, all values are automatically clus
tered, and a representative (mean) value is as
signed to each cluster. All combinations of these 
mean values are evaluated against the output 
node weights to determine combinations ("can
didate expressions") producing the desired out
puts. These candidate expressions are simplified 
and re-expressed as simple rules in terms of the 
original network inputs. This is the same rule 
extraction algorithm we devised for our previ
ous Divisia and US MSI research efforts, based 
on the algorithm originally described in Schmidt 
and Chen [6]. 

The automated binning algorithm originally 
separated INFL outputs into fifteen bins, but 
we artificially re-binned the outputs into three 
groups. This is more consistent with the auto
mated results from our previous research, and 
still yields an excellent mix of potential outputs 
among the bins. The bins for these outputs are: 

• Node 1: (-00 ... 0.01) 

• Node 2: (0.01 ... 0.02) 

• Node 3: (0.02 ... 00) 

The rule generator produces rules describing 

each range separately, so each rule file corre

sponds to a specific output node, representing 

a specific range of output values. (The current 

generation algorithm generously allows bound

ary conditions between two nodes to be repre

sented in both rulesets.) Note that these rules 


. are expressed in terms of the original input val

ues for readability, verses the encoded forms. 

Each file contains a list of rules, numbered for 
reference by human readers for convenience. If 
some combinations of attribute values (nc, nibd, 
etc.) is described by any rule in a specific file, 
those values would be expected to result in the 
"inflation increase %" represented by that node. 
I.e., all rules in the "node 2" output file describe 
conditions producing inflation increases in the 
range (0.01 ... 0.02) %. 

Each line in a rule is formatted: (low_value 
<= attr & attr <= high_value), the mathe
matical equivalent to: low_value <= attr <= 
high_value. The symbols "&" and "I" are logical 
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if ( 
(-Inf <a nc t nc <= 0.091411) 

t (-Inf (= nibd t nibd (= 0.447313) 
t ( (0.076953 (= ibad t ibad (= 0.106028) 

I (0.116952 (= ibsd t ibad (= 0.122060)A 
t (0.122171 (= ibtd t ibtd (= 0.190650) 
t (-Inf <= bad t bsd (= 6.845814) 
t (-Inf (= isa t isa <= 0.186993) 
) return true; 

Figure 2: Sample Generated Rule 


Table 5: Generated Rule Accuracy 

~ 

Output Rule Training set Validation set 

Node Qty (correct, of 84) (correct, of 21) 

1 57 82 (97.62%) 20 (95.24%) 

2 64 79 (94.05%) 19 (90.48%) 

3 10 81 (96.43%) 21 (100%) 

"AND" and "OR" operations, respectively, and 
Inf represents infinity. The logic of the rule must 
evaluate to "TRUE" for the rule to be true. IT a 
rule does not include an attribute, the attribute 
is not required for the given rule. 

Figure 2 shows an example of a rule extracted 
from our trained network. The example clearly 
demonstrates the human-readable format and 
nature of extracted rules. This makes them ideal 
for validation by subject-matter experts. These 
rules can also be executed as code and applied 
to new data. 

Table 5 shows the number of rules generated 
for each output node. The original unencoded 
training and validation data were processed by 
the rule files, with the outputs tested against 
the known targets for each dataset. The ta
ble clearly indicates a good match between the 
learned relationships (rules) and the actual data. 

Once again, the chief value provided by the 
rules is that they are human-readable and can 
be vetted by a subject-matter expert (econome
trician, in this case), while also being machine
executable. 

Interpretation 

The generated rules in all three output files 
were examined by one of the authors, a subject
matter expert in econometrics, for specific ap
plications in economic theory. Although the 
rules are expressed as executable code, they were 
found to be descriptive and easy to read. 

Inspection of the rules indicates exactly the 
same trend as we saw in our analysis of US MSI 
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data: higher yielding assets have higher impact 
on inflation than the lower yielding assets, which 
conforms with the construction of Divisia I MSI 
aggregates. This adds credence to the argument 
that we should construct statistically weighted 
aggregates as our money supply measure. 

These conclusions continue to be consistent 
with our own previous analysis of UK Divisia 
quarterly data, our recent work with US MSI 
data, and contemporary published results from 
other sources. See Barnett [7J and Elger and 
Binner [8] for a more detailed description of user 
costs of monetary assets. 

There are also some interesting relationship 
patterns that can be seen from a simple inspec
tion of the resultant rules. Table 6 shows the 
frequency of occurrences of components within 
the generated rules. From the Table, all of the 
components are generally important inputs for 
describing the learned relationships. IBSD and 
IBTD are frequently included multiple times to 
describe cases when "INFL % increase < 0.02" 
(the first two columns of the Table). (See Fig
ure 2 for an example where IBSD is referenced 
twice in the same relationship.) In addition, the 
last column of the Table shows that BSD and 
ISA are only important about half of the time 
for the relationships describing "INFL increase 
> 0.02." The implications of these results will 
merit closer evaluation. In most cases the rule 
complexity is fairly low, with each component 
being mentioned only once per relationship. 

It is worth noting that, for the monthly Di
visia data, there are 131 total rules across three 
output nodes (57 + 64 + 10), with a minimum 
accuracy of 90%. Our most recent quarterly Di
visia experiments yielded 714 rules (96 + 256 
+ 282 + 80) for four output nodes. The best 
results of our US MSI study yielded 116 rules 
across three outputs, but accuracy varied be
tween 75% and 92% for each output. 

6 Conclusion 

The goal of this research effort was to gener
ate rules describing the relationship of monthly 
Divisia component data as it applies to predic
tion of inflation. A collection of connection
ist models were trained to learn these relation
ships, then a representative model was chosen 
for rule extraction. The successfully generated 
rules were shown to be reasonable in number, ac
curate with respect to both training and valida
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Table 6' Component Frequency of Occurrence 
Component 

Na.me 

Output 1 (of 57) 

(INFL < 0.01) 

Output 2 (of 64) 

(0.01 < INFL < 0.02) 

Output 3 (of 10) 

(0.02 < INFL) 

NC 57/100% 58/ 91% 10/100% 

NIBO 57/100% 64/100% 9/90% 

IBSO 87/153% 92/144% 10/100% 

IBTO 64/112% 79/123% 10/100% 

BSO 57/100% 61/95% 4/40% 

ISA/TESSA 62/109% 67/105% 6/60% 

tion data, a faithful representation of the trained 
neural network, and (most importantly) easy for 
econometric experts to visually examine. These 
rules, expressed in terms of the original unen
coded data, are also machine-executable MAT
LAB code, and can be used independently of the 
original neural network. 

The data used in this series of experiments 
included the ISA/TESSA term. The inclusion 
of this term proved to be a valuable addition 
to the five terms already used in previous mod
els. The seasonally adjuster monthly data also 
yielded superior modeling results and rule qual
ity when compared to the seasonally adjusted 
quarterly Divisia data we've used in the past. 
The results we report in this series of experi
ments is also consistent with other contempo
rary published model results. 

It is our hope that techniques such as the one 
represented here can be commonly employed to 
provide useful inputs for prediction and control 
of inflation. Calibration of these results in a 
large scale macro model would still be an in
teresting route to pursue to determine the full 
extent of the impact and implications of these 
rules for the U.K. economy. 
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